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[1] Various methods have been proposed in the literature to predict the rainfall conditions
that are likely to trigger landslides in a given area. Most of these methods, however, only
consider the rainfall events that resulted in landslides and provide deterministic thresholds
with a single possible output (landslide or no-landslide) for a given input (rainfall
conditions). Such a deterministic view is not always suited to landslides. Slope stability,
in fact, is not ruled by rainfall alone and failure conditions are commonly achieved
with a combination of numerous relevant factors. When different outputs (landslide or
no-landslide) can be obtained for the same input a probabilistic approach is preferable.
In this work we propose a new method for evaluating rainfall thresholds based on Bayesian
probability. The method is simple, statistically rigorous, and returns a value of landslide
probability (from 0 to 1) for each combination of the selected rainfall variables. The
proposed approach was applied to the Emilia-Romagna Region of Italy taking advantage of
the historical landslide archive, which includes more than 4000 events for which the date of
occurrence is known with daily accuracy. The results show that landsliding in the study
area is strongly related to rainfall event parameters (duration, intensity, total rainfall) while
antecedent rainfall seems to be less important. The distribution of landslide probability
in the rainfall duration-intensity shows an abrupt increase at certain duration-intensity
values which indicates a radical change of state of the system and suggests the existence of
a real physical threshold.

Citation: Berti, M., M. L. V. Martina, S. Franceschini, S. Pignone, A. Simoni, and M. Pizziolo (2012), Probabilistic rainfall
thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, doi:10.1029/2012JF002367.

1. Introduction

[2] Rainfall is the most common cause of landslides.
However, the actual failure mechanism is complex and
involves a number of factors that influence the hydrologic
behavior of the slope, the shear stresses acting in the slope
and the mechanical resistance along the potential slip sur-
face. There is therefore not a direct cause-effect relationship
between rainfall and slope failure. To analyze such relation,
many studies have developed rainfall thresholds for land-
slide occurrence using empirical or physical (process-based)
models.
[3] Models employing physically based thresholds use

spatially variable characteristics (e.g., slope gradient, soil
depth, and shear resistance) with a simplified dynamic

hydrological model to predict pore pressure in which rainfall
is the most important input parameter [Frattini et al., 2009;
Gabet et al., 2004; Terlien, 1998; Wilson and Wieczorek,
1995]. These models usually require calibration over a
well-specified type of failures and, in general, they are dif-
ficult to apply over large areas where detailed knowledge of
input parameters (e.g., soil thickness, groundwater condi-
tions, shear resistance parameters) is very difficult to acquire.
[4] Empirical models are more suitable for the develop-

ment of rainfall thresholds at regional scale provided a suf-
ficient amount of information is available. In particular the
timing and location of landslides is required in addition to
rainfall data sufficiently detailed to describe the rainfall at
the landslide site. Caine [1980] was the first to propose a
global rainfall intensity–duration (ID) threshold for the
occurrence of shallow landslides. Since then, many rainfall
thresholds have been proposed, either in the ID plane or
using other rainfall parameters, at the local, regional, and
global scales (for detailed reviews of the published thresh-
olds see, e.g., Aleotti [2004], Corominas [2000], Guzzetti
et al. [2007, 2008], Saito et al. [2010]). The threshold can
be drawn visually or by statistical techniques. In this latter
case, the percentage of known landslide events below a
threshold over the ID space can be used, or more sophisti-
cated threshold-like models can be applied for an objective
identification [Brunetti et al., 2010; Guzzetti et al., 2007;
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Saito et al., 2010]. However, given that rainfall is not
the only factor that causes landslides, a certain degree of
uncertainty is unavoidable in the definition of rainfall
thresholds [Aleotti and Chowdhury, 1999]. The poor quality
of data on which the empirical methods are based may also
increase uncertainty. Only very recently, researchers tried to
address this issue by complementing the rainfall threshold
information with probabilities of landslide occurrence.
Frattini et al. [2009] used logistic regression to define ID
thresholds associated to different levels of return period of
rainfall responsible for landslide triggering. Jaiswal and van
Westen [2009] validated visually drawn thresholds using a
control data set not employed in the empirical model. This
way, they can estimate the conditional probability of land-
sliding after the threshold has been exceeded and the
overall temporal probability of landslide initiation. The use
of rainfall thresholds is becoming common in the context of
flash flood forecasting [Carpenter et al., 1999;Georgakakos,
2006; Martina et al., 2006; Norbiato et al., 2008; Ravazzani
et al., 2007]. Flash floods are rapid processes closely corre-
lated to rainfall events and in many cases traditional flood
warning systems based on hydrological models are not suit-
able for the short forecast times required.
[5] A number of factors may impact the results of the

empirical approach. Major limitations are caused by the
quality of data (homogeneity and completeness, landslide
timing, rainfall data resolution and rain gauge location), but
a key factor is the method used to identify and describe the
triggering rainfall. Many authors either do not specify the
criteria used for rainfall identification or generally refer to
“the beginning of a rainfall event.” However, qualitative
criteria for rainfall identification leave room to subjectivity
and impair comparison of results. To our knowledge, few
authors addressed the problem of rainfall identification
[Aleotti, 2004; Brunetti et al., 2010; Tiranti and Rabuffetti,
2010].
[6] The problem of defining a threshold is implicitly linked

to the problem of estimating the probability of landsliding
and choosing an acceptable probability value. In this work,

we propose a Bayesian approach to estimate the proba-
bility of landsliding conditional to characteristics of rainfall
events. We take advantage of the extensive catalog of his-
torical landslides of the Emilia-Romagna Region (12,000 km2

of mountain territory) to apply the proposed methodology.
After a selection based on the quality of landslide information
(timing and location) we used a data set consisting of
4141 events that occurred between 1939 and present. Daily
rainfall data were provided by a network of 176 tipping-
bucket rain gauges homogeneously distributed in the study
area and available for the full study period. We specifically
address the problem of identifying the rainfall event. This
problem is relevant for all methods but it is of major concern
in Bayesian inference because we will compare the frequency
distribution of the rainfall events that resulted and did not
result in slope failures, and it is therefore essential to adopt the
same criterion for the two data sets.

2. Methodology

2.1. Motivation

[7] A threshold is defined as the level or the value that
must be exceeded to produce a given effect or result. When a
threshold is crossed, a radical change of state within a sys-
tem will occur and this change often manifests suddenly.
Implied in this definition is an inherently deterministic view:
the state of the system can be predicted by comparing the
input value (or a set of input values) with the threshold. Also
implicit is that a given input will have a single possible
output (above or below the threshold) since no randomness
is involved in the development of future states of the system.
[8] Such a deterministic approach can be successfully

used to define the rainfall threshold in the simplest cases.
Figure 1a, for example, shows an ideal condition in which
there is a clear separation between rainfall that triggered
(black dots) and did not triggered (white dots) landslides.
This may be the case of debris flows in coarse granular
material that are initiated by channel runoff [Berti and
Simoni, 2005; Coe et al., 2008], a triggering mechanism

Figure 1. Rainfall intensity-duration thresholds in the two conceptual cases of debris flows triggered by
(a) channel runoff and (b) deep-seated landslides. In this latter case it is difficult to identify a threshold
because rainfall events that result in landslides are not clearly distinguished from those that do not.
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directly controlled by rainfall. In most cases, however, the
distinction between critical and non-critical rainfall is not
trivial. Figure 1b shows the conceptual case of deep-seated
landslides. For these landslides the stability conditions are
controlled by a complex combination of rainfall forcing and
time-dependent factors such as near-surface soil moisture,
pore pressure distribution, weathering and softening of
materials, and long-term changes in field stress [Fell et al.,
2000; Leroueil, 2001]. Failure conditions are achieved with
a unique combination of all these relevant factors and the
state of the system cannot be predicted by rainfall alone.
When different outputs (failure or no-failure) can be
obtained for the same input (a given rainfall event) a deter-
ministic approach is no longer applicable and a probabilistic
model is needed.
[9] Probability-based methods are advantageous for

several reasons. First, they incorporate variability and uncer-
tainty into the model, providing a quantitative assessment of
threshold reliability [Bean, 2009]. For instance, in both cases
described above a deterministic threshold could be defined
at the lower bound of the rainfall that triggered land-
slides (Figure 1). This way, however, the meaning of the
threshold is ambiguous (what happens when the threshold is
exceeded?) and uncertainty is unaccounted. A probabilistic
analysis, including the distribution of non-triggering rainfall,
is much more informative and is capable of assign a reli-
ability to a given threshold (e.g., threshold reliability higher
for case 1a in Figure 1). Second, unlike the categorical
forecast of deterministic methods, probabilistic models fur-
nish a probability distribution of the forecast quantity thus
providing a better ground for estimating extreme events
(which correspond to the tail of probability distributions).
Finally, probabilistic approaches are commonly used in
quantitative risk assessment to determine the confidence
levels of the prediction [Refice and Capolongo, 2004].
[10] In this section we describe a method to determine

probabilistic rainfall thresholds based on Bayesian theory.
The probabilistic approach provides an objective way to
define thresholds in complex cases when conventional
methods become highly subjective.

2.2. One-Dimensional Case

[11] Bayes’ theorem is a direct application of conditional
probabilities. The conditional probability is the probability
of some event A (in our case a landslide) given the occur-
rence of some other event B (a rainfall episode with a certain
magnitude, expressed in terms of total rainfall, intensity or
any other variable). Conditional probability is written P(A|B)
and it is read “the probability a landslide (A) occurs given a
rainfall episode (B).” This probability is provided by the
Bayes’ theorem:

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ ð1Þ

where:
P(B|A) = conditional probability of B given A (also

called the likelihood), that is the probability of observing a
rainfall event of magnitude B when a landslide occurs,

P(A) = prior probability of A (or simply prior), that is
the probability a landslide occurs regardless of whether a
rainfall event of magnitude B occurs or not,

P(B) = marginal probability of B, that is the proba-
bility of observing a rainfall of magnitude B regardless of
whether a landslide occurs or not,

P(A|B)=conditional probability of A given B (also
called posterior probability), that is the probability of
observing a landslide when a rainfall event of magnitude B
occurs.
[12] Bayesian probability is usually computed in terms of

relative frequencies. Thus, if NR is the total number of
rainfall events recorded during a given time reference; NA is
the total number of landslides occurred during the same
period; NB is the number of rainfall events of magnitude B;
and N(B|A) is the number of rainfall events of magnitude B
that resulted in landslides, the probability terms in (1) can be
approximated to:

P Að Þ ≈ NA=NR ð2aÞ

P Bð Þ ≈ NB=NR ð2bÞ

P BjAð Þ ≈ N BjAð Þ=NA ð2cÞ

and equation (1) reduces to P(A|B) ≈ N(B|A)/NB.
[13] The fundamental aspect of Bayes’ inference is the use

of prior and marginal probabilities. For example, assume
that 10 landslides occurred in a certain area during a given
time reference, and that 8 of them were triggered by rainfall
B with an intensity I > 50 mm/day. Common thinking would
say that a rainfall of magnitude B ≡ I > 50 mm/day has a
probability 8/10 = 0.8 to trigger a landslide. This is incorrect
because the ratio 8/10 indicates the probability P(B|A) to
observe a rainfall of magnitude B when a landslide occurs
(the likelihood), not the probability P(A|B) to observe a
landslide when a rainfall B occurs. According to Bayes
theorem, the value of P(A|B) depends on P(B|A) and also on
prior and marginal probabilities. If, for instance, 1000 rain-
fall events occurred in the considered area and 200 of them
had an intensity higher than 50 mm/day, we have P(A) =
10/1000 = 0.01 and P(B) = P(I > 50) = 200/1000 = 0.2. The
actual landslide probability is then P(A|B) = P(A|I > 50) = 0.8 �
0.01/0.2 = 0.04 rather than 0.8.
[14] A rainfall threshold based solely on the rainfall events

that resulted in landslides (the likelihood) is not truly infor-
mative because prior and marginal probabilities are neglec-
ted. This error is particularly insidious since it seems to be
inherent in our way of thinking. Most cognitive scientists
acknowledge that our beliefs rely on a limited number of
heuristic principles such as similarity or representativeness
[Tversky and Kahneman, 1974]. These principles may lead
to severe and systematic errors when applied to uncertain
events because of their insensitivity to prior probability.
[15] An additional working example is given in Table 1.

The table lists the duration (D) and intensity (I) of all the
rainfall events recorded in a hypothetical area during a given
time frame. Five of the twenty rainfall events resulted in
landslides, indicating a prior landslide probability P(A) =
5/20 = 0.25. The data also show that a rainfall intensity
I > 40 mm/day was responsible for most of the historical
landslides (4 out of 5), though this value was exceeded
five times without causing any landslides. One-dimensional
Bayes inference expresses this uncertainty in terms of
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probability. For a rainfall B ≡ I > 40 mm/day, it is P(B|A) =
P(I > 40|A) = 4/5 = 0.80 and P(B) = P(I > 40) = 9/20 = 0.45
(9 out of the 20 rainfall evens fall in the considered range
of intensity). The corresponding landslide probability is
P(A|B) = P(A|I > 40) = 0.80 � 0.25/0.45 = 0.44.
[16] Running the same analysis for different intensity

classes (0 ≤ I < 40, 40 ≤ I < 80, I > 80 mm/day) a histogram
of landslide probability is obtained (Figure 2). The intensity
classes with the higher P(A|B) values are the most suscep-
tible to landslides. The computed probabilities can be
compared with the prior landslide probability P(A) = 0.25 to
evaluate the significance of the conditional event B ≡ I1 ≤
I < I2, where I1 and I2 define each specific intensity class
(see the dashed line in Figure 2). In Bayesian terms, this
comparison indicates how effective the variable is in sliding

the prior probability P(A) to the posterior probability P(A|B),
which is how our prior knowledge is improved by the addi-
tional information provided by the variable B. If the variable
is completely irrelevant to the process, it would be randomly
related with A and the two probability distributions P(B) and
P(B|A) would be roughly the same. According to equation (1)
the posterior probability would be P(A|B) ≈ P(A). In our
example, instead, the posterior probability is well above the
reference prior, indicating a good explanatory power in the
highest classes of rainfall intensity (Figure 2b).

2.3. Two-Dimensional Case

[17] Equation (1) can be easily extended to the case of two
variables B and C:

P AjB;Cð Þ ¼ P B;CjAð Þ � P Að Þ
P B;Cð Þ ð3Þ

where the notation B, C indicates the joint probability of
having a certain value (or range of values) of the two vari-
ables. If, for example, B ≡ I is rainfall intensity and C ≡ D is
rainfall duration, equation (3) provides the probability of a
landslide in response to a rainfall event of given duration and
intensity.
[18] Figure 3 shows the application of equation (3) to our

sample data set (Table 1). All the twenty rainfall events are
plotted in the duration-intensity plane and the plane is
divided into four regions delimited by I and D values
(Figure 3a). Equation (3) is then computed separately for
each region obtaining probabilistic information in the I � D
space (Figure 3b). In the upper-left cell, for example, 2 rainfall
events out of 4 resulted in landslides, that is P(I, D|A) = 2/5 =
0.40 and P(I|D) = 4/20 = 0.20. The prior landslide probability
is P(A) = 5/20 = 0.25 and the posterior landslide probability is
P(A|I, D) = 0.40 � 0.25/0.20 = 0.50 (Figure 3b).
[19] Any pair of variables can be considered in two-

dimensional Bayesian analysis (e.g., peak rainfall intensity,
total event rainfall, antecedent rainfall, groundwater level),

Figure 2. Worked example of one-dimensional Bayesian analysis. (a) Comparison of prior landslide
probability P(A), prior rainfall probability P(B), and conditional probability P(B|A) for three different
classes of rainfall intensity. (b) Computed values of conditional landslide probability P(A|B) and com-
parison with prior landslide probability P(A).

Table 1. Sample Data Set for the Application of the Bayes
Theorem

N
Duration
(day)

Intensity
(mm/day) Landslide

1 0.2 12 No
2 0.5 30 No
3 0.6 21 No
4 0.7 15 No
5 0.8 65 No
6 0.5 78 Yes
7 0.7 85 No
8 0.2 90 Yes
9 0.9 33 No
10 0.3 25 No
11 1.3 22 No
12 1.5 36 Yes
13 1.8 35 No
14 1.8 10 No
15 1.6 60 Yes
16 1.7 75 Yes
17 1.2 70 No
18 1.2 40 No
19 0.4 45 No
20 0.2 10 No
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and their significance can be assessed by comparing the
computed posterior landslide probability with the prior land-
slide probability P(A). In principle, the Bayes’ approach is
suited to handle multidimensional analysis with n-variables,
for example, the combined effect of rainfall duration, rainfall
intensity and antecedent precipitation on landslide triggering.
However, besides the limits imposed by the scarcity of data,
multidimensional data are difficult to visualize in an efficient
or useful manner and for this reason we will restrict the
analysis to the two-dimensional case.

2.4. Multiple Rain Gauges

[20] In some cases it may be desirable to use multiple
rain gauges to get a more accurate description of rainfall in
the area. To do this, we divide the study area into homoge-
neous zones Ai in which the rainfall conditions are similar,
and assign a reference rain gauge to each zone. Individual
areas of influence were defined using Thiessen polygons
[Croley and Hartmann, 1985]. The Bayesian analysis is then
applied separately to each rain gauge polygon by consider-
ing the local rainfall and the historical landslides that
occurred in that polygon. The result is a mosaic map of
spatially variable landslide probability.
[21] A major drawback of this approach, however, is that

the number of historical landslides in each rain gauge area
can be very small, and this leads to inaccurate estimates of
landslide probability. A way to avoid data splitting while
retaining the spatial dependence of rainfall is conceptually
shown in Figure 4. We assign to each historical landslides
the rainfall data recorded in the corresponding rain gauge
“homogeneous” area in order to have representative data. All
the data recorded by the NG rain gauges (NG = 2 in the
figure) are then merged into a single data table and analyzed
as a unique data set. The result is a unique landslide proba-
bility value P(A|B, C) for the entire study area. This value,
however, indicates the probability to have a landslide within
an area Ai ≈ A/NG proximal to the ith rain gauge (referred in
the following as “rain gauge area”), not in the entire area A.

The Bayesian probability unavoidably depends on the scale
at which the observations were available and the computed
values decrease with the number of rain gauges because the
prior probability P(A) = NA/NR becomes progressively
smaller (the same rainfall event is recorded by multiple
instruments while landslides are spatially discrete events).
Scale dependence is therefore implicitly included in Bayesian
analysis and the ratio A/NG indicates the reference area for the
computed probability. For example, if the study area is
100 km2 and the data set combines data from 5 rain gauges,
equation (3) will provide the landslide probability P(A|B, C)
into a reference area of about 20 km2.
[22] Sometime it is necessary to apply the results to a

different scale than that used to infer the probabilities. The
landslide probability P(A|B, C) can be upscaled to a larger
area made of NP adjacent polygons by employing a binomial
probability model. The underlying assumption is that the
change of rainfall probability with scale can be neglected. If
this assumption holds, the binomial distribution can be used
to obtain the probability of observing k successes in n trials,
with the probability of success on a single trial denoted by p:

P kð Þ ¼ n!

k! n� kð Þ! p
k 1� pð Þ n�kð Þ ð4Þ

If we define p = P(A|B, C), equation (4) gives the probability
to observe k landslides (“successes”) in an area constituted
by n = Np polygons. Therefore, the binomial probability
Pbin(A|B, C) to have at least one landslide in the large area
is given by the complementary probability of no landslides
1 � P(k = 0):

Pbin AjB;Cð Þ ¼ 1� 1� P AjB;Cð Þ½ �NP ð5Þ

Back to the previous example, a Bayesian probability
P(A|B, C) = 0.10 in a rain gauge area (20 km2) would be
upscaled to Pbin(A|B, C) = 1 � [1 � 0.1]5 = 0.41 for the
entire area (100 km2).

Figure 3. Worked example of two-dimensional Bayesian analysis. (a) Rainfall intensity-duration plot
showing rainfall that did and did not result in landslides. (b) Histogram of conditional landslide probability
for four different combinations of rainfall intensity and duration.
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2.5. Multiple Landslides Triggered by the Same
Rainfall

[23] It is quite common during major storms that multiple
landslides are triggered by the same rainfall event in the
same area. This case can be explicitly considered in the
Bayesian analysis by introducing an additional variable
which counts the number of landslides triggered by each
rainfall event. However, multidimensional analysis is ham-
pered by the scarcity of data and hence is of limited appli-
cability in practical applications. It is therefore better to
count multiple landslides as one single event and to define
the event A as “the occurrence of at least one landslide in the
proximity area.” This also ensures that the number of land-
slides NA is not larger than the number or rainfall events NR,
which would lead to the unrealistic prior P(A) = NA/NR > 1.
[24] The main objection to this approach is that an

important piece of information (the number of landslides
triggered by a given rainfall) is lost. An alternative solution
might be to count the multiple landslides in each bin, and to
replicate the rainfall events as many times the number of
multiple landslides (to ensure P(A) ≤ 1). This would increase
the landslide probability in the rainfall classes that generated
multiple landslides in the past. In the example application
described in section 4 we used the first approach because it
is simpler and more statistically rigorous.

3. Study Area

3.1. General Setting

[25] The Emilia-Romagna region is located in the north of
Italy and is one of the country’s most populated areas. The

study area includes the mountainous part of the region,
which belongs to the northern Apeninnes chain and covers
approximately 12,000 km2. The elevation ranges from 50 m
to 2100 m a.s.l. over a distance of about 50 km running
north-south. The area has a mild Mediterranean climate with
distinct cold and dry seasons. The average annual rainfall is
around 1300–1400 mm and varies across the area from a
minimum of 500–600 mm in the foothills to more than
2000 mm along the main divide. The bedrock geology is
characterized by three main rock types (Figure 5): clastic
rocks, flysch, and clays units [Bettelli and Vannucchi, 2003;
Pini, 1999]. Clastic rocks account for about 10% of the
mountainous territory and are mostly sandstones, calcar-
enites and marls. Flysch (48% of the area) consists of
interbedded clastic rocks (mostly sandstones and calcar-
enites) and marls with variable ratio of coarse to fine beds.
Clay units (42% of the area) consist of overconsolidated
fissured clays, clayshales, and chaotic clay complexes made
of rock blocks and disrupted strata floating in a scaly clay
matrix. The map in Figure 5 provides a view of the geo-
logical complexity at the scale of the analysis.
[26] The Emilia-Romagna region is strongly affected by

landslides. More than 20% of the mountain territory is
covered by active or dormant landslide deposits. Though
landslides do not usually cause causalities, they cause severe
damage to properties, facilities, and infrastructure. About
€130 million has been spent in the last 4 years on regener-
ation and remedial works.
[27] The most common types of landslides are earth slides

and earth flows in the clay units. Earthflow deposits are
usually elongated with moderately lobate shape. The feeding
zone typically consists of a bowl-shaped area characterized

Figure 4. Conceptual sketch showing a merged data set which combines the rainfall events recorded by
two rain gauges (R1 and R2) and the historical landslides that occurred in the corresponding reference
areas (A1 and A2). N = event number; D = rainfall duration (day); I = rainfall intensity (mm/day);
L = landslide occurrence.
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by failure scars, disturbed slumps, and rotational slips, and it
is bounded by a main headscarp whose rugged morphology
is clearly visible in case of active or recent phenomena. The
toe of the deposit often reaches the main valley bottom or
the bed of a small tributary. Multiple deposits formed by the
juxtaposition of single earthflows are common. The vast
majority of earth flows are subjected to periodic reactiva-
tions triggered by intense rainfall. The return period and the
extent of the reactivation (partial or complete) are highly
variable while the reactivation mechanism consistently
shows earth slides in the feeding basin followed by flow (or
sliding) along the main track.
[28] Flysch units are affected by complex landslides, large

rotational slips, translational slides along bedding planes, or
compound failures. Transition to flow is less common than
in clay units and strongly depends on local geological and
geomorphological conditions. Rockfalls are present in mas-
sive rocks although not very common. In addition to these
large slope failures, many small-scale shallow landslides
occur almost everywhere in the area affecting the weathered
cover of both clay and flysch units. In particular, the fre-
quency of landslide-induced debris flows is increasing in
recent years (unpublished data), seriously endangering local
communities which are not accustomed to these phenomena.
[29] We performed our analysis considering all historical

records of landslides in the study region. We have not dis-
tinguished between different types of landslide or the dif-
ferent rock units for the following reasons. First, in most
cases the information reported in the historical landslide
catalog do not allow to identify the landslide type or even the
precise location of the failure. Second, the partition of the
database into subsets reduces the number of data in each
“homogeneous” group affecting the reliability of the result.
Third, our field experience has shown that major storms are
able to trigger landslides of different types in all the litho-
logical units, while light rainfall events do not trigger land-
slides anywhere. If present, site-specific triggering conditions
do not emerge clearly. Finally, the rainfall threshold should be
implemented in the civil protection alert system which works
at a regional and sub-regional scale.

3.2. Landslide Database

[30] The Emilia-Romagna Geological Survey maintains a
catalog of historical landslides in the study area. The catalog
includes the data of the Italian Archive of floods and land-
slides [Guzzetti et al., 1994] integrated with the information
collected from parochial archives, technical documentation,
reports to local authorities, national and local press. The
landslides listed in the catalog are those reported to local
authorities or described in some historical or journalistic
document. Any slope movement causing some sort of
damage was most likely reported while minor phenomena
occurred in remote areas were likely to go undetected.
Although the catalog is not truly comprehensive it provides
an accurate inventory of the landslides that caused any
damage in the area. Rossi et al. [2010] showed that the cat-
alog is statistically complete from about 1951 and they used
it as a proxy of actual landsliding.
[31] The historical catalog is available as an Access data-

base. A total of 9004 landslides are reported over the period
1400–2009, and for each landslide the following information
is stored: location, date of occurrence, landslide character-
istics (length, width, type, and material), triggering factors,
damages, references. Not all information is available for all
landslides and in most cases the classification is lacking or
ambiguous. To the purpose of the analysis, however, we
only need the location and the triggering date of the histor-
ical landslide, in order to identify the triggering rainfall
(section 4.1). The selection of the landslides for which the
date of occurrence was known with daily accuracy led to a
data set of 4141 landslides in the period 1939–2009 that was
used for the analysis (Figure 6a). These historical landslides
are quite evenly distributed in the area and affect all the
geological units described above (compare Figure 6a with
Figure 5).

3.3. Rainfall Database

[32] The monitoring rain gauge network of the Emilia-
Romagna region consists of over 200 tipping-bucket rain
gauges homogeneously distributed over the entire regional
territory, 176 of them located in the mountainous part
(Figure 6b). Rainfall data were collected daily in manual rain

Figure 5. Lithological map of the Emilia-Romagna region.
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gauges before 2001 and automatically every 30 min since
2001. Daily rainfall was then used for the analysis throughout
the period 1939–2000. Despite their low resolution, rainfall
data are suitable to identify the critical rainfall events
that triggered historical landslides in the study area (see
section 4.1). In fact, because of the predominance of fine-
grained soils, landslides generally occur after several days of
continuous rainfall and the response time to rainfall forcing
is much longer than usually observed for shallow landsliding
in coarse soils [e.g., Caine, 1980; Aleotti, 2004]. Measure-
ments of the snow cover are only available in a few stations
since 2000 and were not used for the analysis.

4. Application

4.1. Identification of Rainfall Events

[33] The first step in the evaluation of any rainfall
threshold is to identify the rainfall episodes that triggered the
historical landslides, here referred as “triggering rainfall.”
Ideally a triggering rainfall event should be a well-defined
rainfall episode, described by its duration (D), amount of
precipitation (E), and intensity (I ) and clearly related to a
given landslide. In some cases the identification is simple
(for instance if the landslide occurred after a heavy rainfall
preceded by a prolonged dry period) but usually it is not.
Landslides may result from complex rainfall sequences
made of multiple bursts of variable duration and intensity
that make it difficult to detect a well-defined triggering

episode. The greatest uncertainties usually derive from the
identification of the beginning of the triggering rainfall while
the time of landsliding is taken as its end. A certain amount
of time without rainfall (or limited rainfall) can be used as
criterion to truncate the rainfall sequence that precedes a
landslide event [Brunetti et al., 2010]. Alternatively, the
identification relies on author judgment [Aleotti, 2004] or on
the use of multiple time frames [Frattini et al., 2009].
Additional sources of uncertainty are the time of occurrence
of the landslide (that may have been reported late or not be
representative of the initial failure in the source area), or the
role of snowmelting.
[34] The identification of triggering rainfall is of particular

concern in Bayesian inference. For such an analysis it is
essential to adopt the same objective criteria to detect rainfall
events that have triggered landslides and those that have not
caused landslides. In Bayesian terms, this means that the
same criteria must be used to define the conditional distri-
bution of the triggering rainfall B|A and the marginal rainfall
distribution B (see section 2). In order to address the prob-
lem, we first analyzed the rainfall sequence for each land-
slide event and isolated the triggering rainfalls based on
expert judgment. We then used an automatic procedure to
extrapolate the criteria that better reproduced our results in
terms of rainfall identification.
[35] For each of the 4141 historical landslides, we com-

pared the rainfall data recorded by the reference rain gauge
(see Figure 4) with those recorded by the other two closest

Figure 6. (a) Distribution of the 4141 historical landslides for which the date of occurrence is known
with daily accuracy and (b) rain gauge network in the mountainous part of the Emilia-Romagna region.
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rain gauges. This comparison was done to detect a possible
malfunctioning of the reference instrument and to investigate
the spatial variability of the rainfall event. In almost all cases
no significant differences were observed between the recor-
ded data, thus the reference rain gauge was used in the
analysis. The triggering rainfall was then defined visually by
selecting the rainfall episode closest to the date of occur-
rence of the landslide. This work was done independently by
three of the authors to evaluate possible interpretation dif-
ferences. The results were then compared and the dis-
crepancies (usually related to the beginning of the triggering
event) were discussed to arrive at a shared definition. We
generally agreed to define the triggering event as a period of
continuous or nearly continuous precipitation which starts
with the onset of the rainfall (or with an abrupt increase of
rainfall intensity in a period of light rain) and ends the day of
occurrence of the landslide. For those landslides that have
occurred after the end of the rainfall, the duration of the
triggering event was set equal to the rainfall duration.
[36] Each triggering rainfall was then classified as: well-

defined (type 1), uncertain (type 2), or undefined (type 3).
[37] Type 1: Well-defined rainfall events can be clearly

identified, as shown in the examples of Figures 7a–7d. In
these cases the degree of subjectivity is very low, though not
entirely absent. For instance, the first rainfall pulse in
Figure 10d could have been included into the triggering
event, or the triggering rainfall in Figure 10b limited to the
second rainfall burst. Type 1 events were detected for 2741
of the 4141 historical landslides (66%).
[38] Type 2: Uncertain events (10% of the historical

landslides) consist of distinct rainfall episodes characterized
by uncertain or subjective limits because of the presence of
secondary rainfall episodes (Figure 7f ).
[39] Type 3: Undefined events (24% of the historical

landslides) consist of all those landslides without a signifi-
cant rainfall event close to the date of occurrence, such as
landslides triggered during complex rainfall sequences
(Figure 7g) or by light rainfall in winter time (snowmelting?).
The difficulty to establish the exact time of a landslide
[Guzzetti et al., 2007] and the influence of factors other than
rainfall are of the main reasons for this undefined events.
[40] Only well-defined events (Type 1) were considered in

Bayesian analysis. When using this method trigger rainfall
must be reliably identified in order to get a reliable likeli-
hood function P(B|A). Landslides triggered by snowmelting
or influenced by other factors (Type 2 and 3) were then
omitted. Among the 2741 Type 1 records, 1573 correspond
to duplicated landslides triggered by the same rainfall in the
same rain gauge area. Since multiple landslides are not
counted in the analysis (see section 2.5), the suitable land-
slide records are then NA = 2741 � 1573 = 1168. Interest-
ingly, about 60% of these well-defined landslides occurred
at the end of the rainfall event or a few days later (as in
Figures 7b and 7c), while the remaining 40% even occurred
before the end (Figure 7d). This indicates a rapid hydro-
logical response of the slopes to rainfall, despite the data set
mainly consist of landslides in fine-grained soils.
[41] An automated detection algorithm was used to detect

all the rainfall events that happened in the study area in the
last 50 years. The algorithm scans a rainfall time series and
detect the rainfall events using a moving-window technique:
a new event starts when the precipitation cumulated over DT

days exceeds a certain threshold ET, and ends when it goes
below this threshold. For instance, if DT = 3 days and ET =
2 mm, the rainfall event starts when the cumulative rainfall
exceeds 2 mm in 1, 2, or 3 days (that is if 2 mm are exceeded
on the first day, the rainfall starts at day 1). Then, the rainfall
event stops when it rains less than 2 mm in 3 days; the end of
the event is defined as the last of the three days in which the
rainfall is greater than zero.
[42] Different combinations of DT and ET were tested,

with values ranging from 1 to 10 days and from 0 to 10 mm
respectively. The best combination was defined as the one
that can reproduce more closely our expert judgment. To this
purpose we reconsidered the 1168 triggering rainfall of Type
1 and for all the landslides which occurred before the end of
the rainfall (40% of the cases) we redefined the event to the
end. Such modified data set was used to calibrate the auto-
matic detection algorithm. For each combination of DT and
ET, the rainfall events detected by the algorithm were com-
pared with those manually defined, using the percentage root
mean square error of the prediction (RMSEP) to measure the
goodness of fit. As can be seen in Figure 8, the prediction
error has a minimum using DT = 3 days and ET = 5 mm. By
adopting these values the algorithm is able to replicate our
expert judgment (see the examples in Figures 7a and 7b)
although minor discrepancies still occur in some cases
(Figures 7c and 7d).
[43] The calibrated algorithm was finally applied to all the

176 rain gauges available in the area. A total number of
250177 rainfall events were identified and characterized in
terms of total event rainfall E (mm), event duration D (days),
average intensity over the event I = E/D (mm/day), and
antecedent rainfall in the 14 (AE14), 30 (AE30), and
60 (AE60) days preceding the triggering rainfall (mm). The
frequency distribution of these parameters will be compared
with those pertaining to critical rainfalls to compute land-
slide probability. In this respect it could be argued that the
two data sets are not truly comparable because triggering
rainfall are truncated at the landslide date. However, as
already mentioned, about 60% of the landslides occurred at
(or after) the end of the rainfall and this percentage rises to
90% by including the three preceding days . In our sample
application the discrepancy between the two data sets is
then small. In cases where a systematic difference exists
between triggering and non-triggering rainfall (for instance,
if landslides typically occur at peak rainfall) the latter
should be differently defined to make the two data sets
comparable.

4.2. Conventional Methods

[44] Conventional rainfall thresholds are usually obtained
by drawing the lower-bound limit of the rainfall events that
have resulted in landslides (triggering rainfall) or by defining
a dividing line through these data using some statistical
technique. Intensity-duration thresholds are the most com-
monly reported. They often take the form of a power law
with a negative scaling exponent and exhibit a linear trend
on a logD � logI space.
[45] Before applying the Bayesian method it can be useful

to draw visually the lower boundary of triggering rainfalls
for our data. The lower envelope of the critical rainfall
events is often used as operational threshold in conventional
methods [e.g., Jibson, 1989; Tiranti and Rabuffetti, 2010].
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Figure 9a shows the log-log ID plot for the 1168 well-
defined rainfall events that triggered 2741 landslides in the
Emilia-Romagna region. The lower envelope of experi-
mental points is located below the regional threshold pro-
posed by Guzzetti et al. [2007] for the CADSES area
(Central European Adriatic Danubian South-Eastern Space,
mild midlatitude climates). This threshold was defined by a
thorough analysis of many empirical thresholds published in
the literature, and it is taken as representative outcome of

conventional methods with the purpose of comparing
deterministic and probabilistic results (although this thresh-
old was inferred using a Bayesian technique it is here con-
sidered a “conventional threshold” since only the triggering
rainfall events were used in the analysis).
[46] It is very unlikely that a rainfall event below the two

lines in Figure 9a will trigger a landslide. Both thresholds,
however, would be of limited use in practice: if we compare
the two thresholds with the distribution of the rainfall that

Figure 7. Examples of manual (gray areas) and automatic (dashed areas) identification of the triggering
rainfall. Black arrows indicate the date of occurrence of the landslide reported in the historical catalog.
(a–f) Types 1, 2, and 3 are distinguished for the different ease of identification (see text).
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did not result in landslides (Figure 9b) we see a large number
of non-critical rainfall falling above thresholds. If the
threshold is used to trigger an alarm, the percentage of false
alarms is as high as 32% for the CADSES threshold and
75% for the lower envelope. Similar results are obtained
using other rainfall descriptors such as total event rainfall, or
normalizing the data by the mean annual precipitation. In all
the cases it is not possible to draw any line of distinction
between triggering and non-triggering rainfall.

4.3. One-Dimensional Bayesian Probability

[47] The one-dimensional Bayesian analysis evaluates the
significance of a variable B in explaining a certain event A.
In our application A represents the occurrence of landslide in
the study area and B any variable describing the rainfall
event, such as rainfall duration or intensity. As described in
section 2.2, the comparison between the posterior landslide
probability P(A|B) and the prior landslide probability P(A)
shows the gain of knowledge due to the condition, and
therefore indicates the significance of B in the occurrence of
event A. If P(A|B) objectively differs from P(A) the variable
B has a significant influence, if P(A|B) ≈ P(A) it has not.
[48] The analysis can be applied to the Emilia-Romagna

data set following the procedure described in section 2.2.
The marginal rainfall probability P(B) is computed using the
NR = 250177 rainfall events recorded in the last 50 years,
and the conditional probability P(A|B) using the NA = 1168
well-defined rainfall that triggered the historical landslides.
Prior landslide probability is therefore P(A) = NA/NR = 1168/
250177 = 0.005. Five explanatory variables are tested: event
rainfall E, rainfall duration D, mean rainfall intensity I,
antecedent rainfall in the 14 (AE14) and 30 (AE30) days
before the event.

[49] The results of the analysis are shown in Figures 10
and 11. The charts on the left compare the frequency dis-
tributions of triggering rainfall versus overall rainfall, that is
P(B|A) versus P(B). The ratio of the two distributions (mul-
tiplied by P(A)) gives the landslide probability P(A|B) shown
on the right. A large difference between P(B|A) and P(B)
gives high landslide probability and indicates the high sig-
nificance of the considered variable. The results in Figure 10
clearly show that both event rainfall, rainfall duration, and
rainfall intensity are strongly significant: in all cases the
distributions P(B|A) and P(B) are markedly different and the
corresponding landslide probability is well above the prior
probability P(A) (see section 2.2). Rainfall intensity, in
particular, seems to be the most significant variable among
the three, showing values of P(A|B) as high as 0.28 for
I > 100 mm/day.
[50] The probability of landsliding increases with the

severity of the event (increased values of rainfall precipita-
tion, duration, or intensity) although the rise is somewhat
irregular due to the uneven distribution of data. However, at
the highest values of the three parameters, the landslide
probability seems to decrease (Figures 10b–10d and 10f).
This unexpected trend is mainly due to two factors. First, the
computed probabilities of such extreme events are affected
by a lack of significance due to low sample sizes. Bins with
few data may not be sufficiently informative and a small
variation in the reported number of events could result in a
very different probability. To evaluate the impact of this
uncertainty we computed the 95% confidence intervals from
Poisson counting errors to the number of landslides [Bailar
and Ederer, 1964; Naylor et al., 2009] and propagated
these through the analysis to define the confidence bounds
of landslide probability (dashed lines in Figures 10 and 11).
As expected, the upper bounds increase rapidly with the
severity of the rainfall event and the final decrease of land-
slide probability is less noticeable. A second reason of equal
importance is the bias introduced by the definition of the
triggering rainfall (section 4.1). Triggering rainfall are trun-
cated at the landslide date while non-triggering rainfall
continue until the end of the rain. Therefore, it may happen
that the landslides triggered by a long-lasting rainfall event
are counted in another bin because they occurred before the
end of the rainfall. This bias may explain, together with
sampling effects, the observed trend of landslide probability
associated to extreme rainfall events.
[51] Bayesian analysis also shows that landslides in the

study area are not correlated with the antecedent precipita-
tion in the 14 or 30 days before the event (Figure 11). In both
cases the conditional distribution of triggering events P(B|A)
is very similar to the rainfall marginal P(B) and for all
classes it is P(A|B) ≈ P(A). This finding is rather surprising
because it is generally regarded that antecedent rainfall
conditions strongly affect slope stability in fine-grained soils
[Corominas, 2000]. This issue will be discussed in section 5.

4.4. Two-Dimensional Bayesian Probability

[52] Two-dimensional Bayesian analysis evaluates the
conditional probability of the event given the joint occur-
rence of two control variables (section 2.3). The variables
should be selected among those exhibiting the highest
explanatory power in one-dimensional analysis, which in
our case are event rainfall, rainfall duration, and rainfall

Figure 8. Calibration of the automated detection algorithm
used to isolate the rainfall events in the rain gauge data
series. The chart shows the goodness of fit between auto-
mated and manually defined triggering rainfall (in terms of
percentage root mean square error of the prediction) as a
function of the two algorithm parameters. The circled values
indicate the calibrated values of DT and ET associated to the
minimum square error (black dot).
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intensity. Given that rainfall thresholds are usually defined
in the rainfall duration-intensity space, the analysis is per-
formed using these two variables.
[53] The application to the Emilia-Romagna data set

follows the procedure described in section 2.3. All the
rainfall events recorded in the last 50 years are plotted on
a log-log I � D chart (NR = 250177, white dots in
Figure 12a) together with the rainfall events that resulted in

landslides (NA = 1168, black dots in Figure 12a). The
logD � logI space is then divided in 9 � 13 cells (a rea-
sonable compromise between rainfall resolution and number
of data in each class), and the probability of a landslide
occurring is computed for each cell using equation (3). As
discussed in section 2.4 these values indicate the probability
to have a landslide in the proximity area of a single rain
gauge (about 65 km2). Also remember that the computed

Figure 9. Rainfall intensity-duration thresholds for the initiation of landslides in the Emilia-Romagna
region. Black lines show the regional threshold proposed by Guzzetti et al. [2007] and the lower envelope
of (a) the triggering rainfall of the Emilia-Romagna data set. (b) The two thresholds are compared with the
rainfall events that have not resulted in landslides during the same time period.
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Figure 10
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values are just a proxy of the “true” landslide probability
because the historical catalog may be incomplete for remote,
minor landslides (section 3.2).
[54] The result of the analysis is shown in Figure 12b. As

can be seen, the probability of having a damaging landslide
is zero if the intensity of the rainfall event is lower than

about 2.5 mm/day (logI = 0.4), regardless the duration of the
event. For short-duration rainfall (less than about 2 days) this
probability is zero up to an intensity of 10 mm/day. The “no
landslides” area shown in the chart encloses all the cells in
which P(A|I, D) = 0 because NA(c) = 0, that is no landslides

Figure 11. One-dimensional Bayesian analysis of the Emilia-Romagna data set considering the antecedent
precipitation in the (a–b) 14 and (c–d) 30 days before the triggering event. Symbols are the same as in
Figure 10.

Figure 10. One-dimensional Bayesian analysis of the Emilia-Romagna data set. Three different rainfall variables B are
considered: (a–b) event rainfall, (c–d) rainfall duration, and (e–f) rainfall intensity. Charts on the left show the prior landslide
probability P(A), the prior rainfall probability P(B), and the conditional (known) probability P(B|A) for different values of the
considered variable. Charts on the right compare the computed landslide probability P(A|B) with the prior landslide proba-
bility P(A) (dotted lines) to evaluate the significance of the considered variable. Dashed lines on the right charts indicate the
95% confidence bounds around P(A|B).
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Figure 12. Two-dimensional Bayesian analysis of the Emilia-Romagna data set. (a) Log duration-log
intensity chart showing the distribution of the rainfall events that resulted in landslides (black dots) and
that of all recorded rainfall during the same time period (gray dots). (b) Histogram of landslide probability
as a function of rainfall duration and intensity. The black line is the regional threshold proposed by
Guzzetti et al. [2007]. The “no landslide” area indicates rainfall conditions that never resulted in landslides
during the considered time period; the striped area indicates rainfall conditions that never occurred during
the same period.
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are reported in the historical catalog. The regional threshold
proposed by Guzzetti et al. [2007] falls just above this area.
[55] The landslide probability increases with both rainfall

duration and intensity, although this latter variable affects
the results more. The maximum probability value of 0.4 is
reached for rainfall events with a duration of 3–5 days and
an intensity greater than 100 mm/day. The lower landslide
probability computed for rainfall events characterized by
high intensity and long duration (10 days or more) is partly
due to contouring effects and partly to the data bias previ-
ously discussed (section 4.3).
[56] The results can be visualized best as lines of equal

landslide probability on a 2D plot (Figure 13). Interestingly,
the isolines of Bayesian probability are roughly parallel to
the regional threshold proposed by Guzzetti et al. [2007],
indicating that our statistical analysis provides comparable
results with the more traditional methods. The linearization
of the isolines using a constant slope provides a series of
possible rainfall thresholds associated to different proba-
bility of landslide. This raises the question of which prob-
ability value, if any, is the “true value” to consider as an
alert threshold. For example, the Guzzetti threshold corre-
sponds to a landslide probability of less than 0.01. A rea-
sonable choice would be to set the threshold where there is
an abrupt increase of the probability of failure, which indi-
cates a radical change of state of the system. In our case a
threshold could be then defined at P(A|I, D) ≈ 0.05 since the
landslide probability rapidly increases above this line (at
least for short-duration rainfall). However, there is not a
general rule for this choice. The acceptable probability of

failure is strongly related with the acceptable risk and the
acceptable amount of damages and losses. Even a proba-
bility of 0.01 can be unacceptable in a vulnerable area.
[57] It should be also recalled that landslide probability

strongly depends on the areal extent. In the scenario of
spatially uniform rainfall over the area, the larger the area the
higher is the probability to have a landslide in response to a
given rainfall, and this scale-dependence is implicitly con-
sidered in Bayesian analysis (see section 2.4). For example,
if we apply the binomial theorem to upscale the computed
probability to a larger area made of 40 adjacent rain gauges,
which corresponds to the reference territorial unit of about
2600 km2 used in the regional alert system, we obtain the
results shown in Figure 14. The isolines of landslide prob-
ability are well defined, parallel, and with slope similar to
the previous case, but the numerical values are considerably
higher. The Guzzetti threshold now corresponds to a
landslide probability of 0.1, and the slope break shown by
the isolines (at about 0.2–0.4) is much lower than for a
smaller area.

5. Discussion

5.1. Advantages of the Method

[58] Several methods have been proposed in the literature
to determine the uncertainty related to the definition of
rainfall thresholds using both frequentist statistics or
Bayesian inference [Brunetti et al., 2010; Peruccacci et al.,
2012]. In all these methods, however, only the rainfall that
resulted in landslides are considered. Therefore, the computed

Figure 13. Lines of equal landslide probability in the rainfall duration-intensity chart (note that isolines
are not equally spaced). Probability values refer to the average extent of the 176 rain gauge areas (about
65 km2). Black lines indicate possible rainfall thresholds for different values of acceptable landslide prob-
ability. Dashed line is the regional threshold proposed by Guzzetti et al. [2007]. The “no landslide” area
indicates rainfall conditions that never resulted in landslides during the considered time period; the striped
area rainfall conditions that never occurred during the same period. The thick ticks along the I and D axes
indicate the spacing of the data points that underlie the interpolation (see the grid in Figure 12a).
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probabilities of landslide occurrence only represent a part of
the overall uncertainty, which related to the scatter of the
triggering rainfall. In our approach both the critical and non-
critical rainfall events are considered and this allow to express
all the uncertainties in terms of probabilities. Bayes rule
explicitly considers the fact that in complex geological con-
ditions the same rainfall event may or may not result in a
landslide depending on a large number of factors such as
hydrological behavior, decrease in shear strength, long-term
deformation rate, progressive failure, or human actions. In our
sample application, for instance, although it is practically
impossible to draw any dividing line between the rainfall that
resulted and did not result in landslides (Figure 9), it is fairly
easy to guess a reasonable threshold in terms of landslide
probability (Figures 12–14).
[59] In addition, Bayes predictions can be updated

dynamically as new data becomes available by simply
shifting the posterior probability P(A|B) into the likelihood
P(B|A). Last, the proposed method is tailored to practical
decision making, where it is generally essential to consider
the cost of both missed alerts (false negatives) and false
alarms (false positives).

5.2. Limitations

[60] Critics of Bayesian methods complain that Bayes rule
does not tell us anything we didn’t already believe [Gelman,
2008]. The posterior probability P(A|B), in fact, entirely
depends on the likelihood function and on prior and mar-
ginal probabilities: therefore, we don’t learn anything new so
much as merely suggested by data. Although these criticisms

can be seen as a strength of the method (the Bayes approach
does not create anything but makes evident what is hidden in
the data), they highlight the philosophical conflict between
frequentists and Bayesians, and are justified when the prior
is unknown and must be selected subjectively [Efron, 1986].
The objection is not relevant in situations where, as in our
application, the prior and marginal distributions have a
physical basis and can be derived from empirical data. Even
in this case, however, it is important not to blindly believe to
the results, bearing in mind that Bayesian methods tend to
support our preconceptions. For example, if the rainfall B
never resulted in landslides during the observation period,
the landslide probability P(A|B) will be zero because the
likelihood P(B|A) is zero. However, given the uncertainties
in the landslide catalogs, it can be dangerous to disbelieve
results that may surprise us. It is therefore important to
analyze long-term data series in order to evaluate the mar-
ginal distribution of rainfall P(B) and to use a complete
landslide catalog which covers the same long period to
estimate the likelihood function P(B|A). In some cases this
can be a serious limitation to the application of the method.
[61] Another limitation (which also applies to traditional

methods) concerns the long-term representativeness of the
historical data. Natural systems are affected by radical
changes in land use, land cover, rainfall pattern, and human
expansion, which influences the frequency of reported
landslides. Therefore, the conditions that favored or trig-
gered landslides in the past may not be representative for the
future. In probabilistic terms this means that prior probabil-
ities may be no longer significant. Bayesian analysis allows

Figure 14. Lines of equal landslide probability in the rainfall duration-intensity chart (note that isolines
are not equally spaced). Probability values refer to the reference territorial unit used in the regional alert
system (about 2600 km2) and were computed by applying the binomial theorem to the probability values
shown in Figure 13. The “no landslide” area indicates rainfall conditions that never resulted in landslides
during the considered time period; the striped area rainfall conditions that never occurred during the same
period. The thick ticks along the I and D axes indicate the spacing of the data points that underlie the inter-
polation (see the grid in Figure 12a). Note that the color scale is different from Figure 13.
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us to add control variables or to redefine prior information to
account for these changes, but we must be aware that prob-
abilistic predictions only rely on previous knowledge. When
(as in our study area) the frequency, style, and spatial dis-
tribution of landslides does not change significantly during
the observation period we can assume that long-term varia-
tions are slow and that our predictions will be reliable for the
near future.
[62] Another (minor) limitation of the method is that the

results computed for two different areas cannot be directly
compared. In fact, the landslide probability depends (beside
other factors) on the extent of the reference area: the larger
the area, the higher is the probability to have a landslide.
Moreover, even if the two areas are similar, different criteria
could have been adopted to compile landslide catalog or to
define the rainfall event, leading to different values of like-
lihood, prior, and posterior probability. Some sort of nor-
malization must be done in these cases in order to compare
the landslide probability.

5.3. Specific Results

[63] The proposed approach was applied to the Emilia-
Romagna Region of Italy (12,000 km2 of mountain territory)
taking advantage of the landslide historical archive that
includes more than 9,000 records. The vastness of the
archive offers rare opportunity to explore the relationship
between rainfall and landslides. A careful selection was
operated to reduce uncertainties about landslide timing and/
or location and landslides possibly triggered by other factors
(e.g., snowmelt, anthropic), leaving 2741 landslides associ-
ated to 1168 well-defined triggering rainfalls.
[64] The objective identification of a rainfall event and the

choice of representative parameters for its description are
two closely related problems. They obviously influence the
results of any deterministic or probabilistic rainfall threshold
analysis. Based on the analysis of triggering rainfall patterns,
we propose 3 days and 5 mm of rain as criterion to locate the
beginning (criterion is exceeded) and the end (criterion is not
exceeded) of rainfall events. Antecedent rainfalls are mea-
sured backward from the onset of the triggering event. In
Bayesian inference, an objective identification criteria is
doubly important since it is used to obtain both marginal and
conditional distributions.
[65] Our results show a clear dependence between the

parameters describing the rainfall event (total rainfall, dura-
tion and mean intensity) and the probability of landsliding
(Figure 10). Much more surprisingly, we found no clear
correlation with the antecedent rainfall in the 14 and 30 days
before the event (Figure 11), which seem to be unimportant
compared to the event rainfall. These findings were system-
atically confirmed in the sensitivity analysis (section 5.4). In
literature, there is general agreement in recognizing that the
role of antecedent rainfall decreases with soil conductivity
and thickness of the unstable mass [Bonnard and Noverraz,
2001; Campbell, 1975; Corominas, 2000]. Since our data
set includes many landslides in fine-grained soils we would
expect to register some sort of dependence with antecedent
rainfall conditions.
[66] A possible explanation of this result may lie in the

criterion used for rainfall identification. Most reported works
have adopted a fix rainfall duration (one to few days) that

may cause some event rainfall to be accounted for as ante-
cedent [Chleborad et al., 2006; Glade et al., 2000; Jaiswal
and van Westen, 2009; Kim et al., 1991; Terlien, 1998]. In
those few cases where researchers adopted a clear distinction
between antecedent and event rainfall, the relevance of
antecedent precipitation did not emerge as clearly [Aleotti,
2004]. Also, it is important to bear in mind that our analy-
sis provides the probability of having at least one landslide
and does not consider multiple events. This might help to
explain the result because widespread (multiple) landsliding
proved to be satisfactorily related to antecedent moisture
conditions [Godt et al., 2006].
[67] In any case, the substantial independence from ante-

cedent rainfall indicates that in the study area the slopes react
rapidly to the rainfall events. This finding agrees with the
field data collected by Berti and Simoni [2010], who moni-
tored representative clay slopes in the area detecting fast and
transient increases of pore pressures in response to individ-
ual rainfall events. The fact that nearly all the historical
landslides occurred during (or immediately after) the rainfall
event is a further evidence of the strong linkage between
slope stability and short-term hydrologic response.
[68] Focusing on the possible effects of a rainfall event,

the two-dimensional Bayesian inference allowed quantifi-
cation of a probability of triggering damaging landslides to
any event in the ID space. Lines of equal probability show a
trend similar to other rainfall thresholds defined using con-
ventional methods. However, in this case the impossibility
of separating rainfall events that trigger or do not trigger
landslides is formally recognized and any “user” faces the
difficult task to choose appropriate probabilities to associate
with alert levels or other specific actions. The critical value
of landslide probability would depend on the vulnerability
and value of exposed properties and infrastructures, and it is
closely related to the concept of acceptable risk. It should
then be evaluated by means of a formal risk analysis. From
the point of view of researchers investigating landslide
mechanisms, we stress that the numerical value of proba-
bility is tightly connected to the reference area chosen for the
analysis. For example, in the specific application presented
here, the probability of having at least a landslide within the
reference area of a single rain gauge (�65 km2) is 0.15 for a
two-days rainfall with average intensity of 40 mm/day. The
same rainfall has a probability of 0.80 within a larger terri-
torial unit (�2600 km2). In other terms, the selection of
appropriate levels of probability cannot be separated from
the specific problem that is addressed nor from the area of
application.
[69] Finally, it must be borne in mind that the database

includes different landslide types in different materials,
which were analyzed together in order to have a suitable
number of data (section 3.1). Since it is physically reason-
able to expect different landslide types to by triggered by
different rainfall conditions, the proposed probabilistic
approach cannot provide a reliable insight into the landslide
mechanics. More focused theoretical and observational
studies are required to this purpose. Also the lack of reso-
lution in rainfall data (only daily rainfall is available for the
whole period) prevents a more detailed analysis of the slope
response to rainfall.
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5.4. Uncertainty Associated to the Input Parameters

[70] To verify and validate the results, a sensitivity analysis
was carried out by changing the input values of the param-
eters according to the associated uncertainty. Bayesian
probability was recomputed for different combinations of
input data and results were compared with those described
above. The considered range of variation of the parameters is
listed in Table 2. In particular: (1) we included the “uncertain
events” (Type 2) in the data set of the triggering rainfall in
order to evaluate the sensitivity of the results to uncertainties
in the events definition; (2) for all the landslides triggered
before the end of a rainfall event (40% of the cases) we
assumed that the duration of the critical rainfall (triggering
event) is equal to the overall rainfall duration, in order to
make the two data sets of triggering and non-triggering
rainfall perfectly comparable (see section 4.1); (3) we
assigned different values to the parameters DT and ET used
for automatic rainfall detection (DT = 1 day and ET = 5 mm
according to the values used by Pizziolo et al. [2008] for the
same data set); (4) we restricted the analysis to the complete
period of the catalog (1951–2009) [Rossi et al., 2010].
[71] From the sensitivity analysis it was found that land-

slide probability is very sensitive to the rainfall detection
criterion (point 3) and, to a lesser extent, to the duration of
the critical rainfall (point 2). Adding the “uncertain events”
(point 1) or restricting the analysis to the complete catalog
(point 4) has instead a little effect on the results. Although
the values of landslide probability may change up to 30% for
some combinations of the parameters, in all cases the shape
of the probability distribution in the ID plane is remarkably
similar. The sensitivity analysis confirm the trend shown in
Figures 12 and 13, with peaks of landslide probability in the
same rainfall classes. Therefore, the uncertainty associated
to the input parameters does not have a great influence in our
sample data set.

6. Conclusions

[72] The following conclusions can be drawn from the
present study.
[73] 1. Bayes statistics offers a convenient way to evaluate

rainfall thresholds in complex geological environments,
where the distinction between critical and non-critical rain-
fall is difficult and conventional methods become highly
subjective.
[74] 2. In these cases it is essential to consider both the

probability that a rainfall event resulted in landslides (like-
lihood function) and the probability that a rainfall event did

not triggered landslides (marginal rainfall distribution) in
order to express the uncertainties in terms of probability.
[75] 3. The computed landslide probability is scale-

dependent and refers to a well-defined area. Upscaling to a
larger area can be done by applying the binomial model.
[76] 4. The application to the Emilia-Romagna data set

(northern Apennines, Italy) proved that the proposed method
is effective. Though there was no obvious difference
between critical and non-critical rainfall, Bayesian analysis
clearly showed an abrupt increase of landslide probability in
rainfall duration-intensity plane which allows one to define
an operational threshold, that is a critical level of rainfall
beyond which we observe a radical change of state of the
system.
[77] 5. In the study area, landslide triggering is largely

controlled by single rainfall episodes (here defined as a
period of continuous rainfall separated from the next one by
a period of at least 3 days with rainfall E ≤ 5 mm). Event
rainfall, event duration, and average rainfall intensity are
significantly correlated with landslide probability. Quite
surprisingly, antecedent rainfall in the previous 14, 30, or
even 60 days seems to be unimportant for landslide
triggering.
[78] The proposed method needs to be tested under a wide

variety of geological conditions to prove its practical effec-
tiveness. The authors are willing to share the algorithms and
Matlab codes developed for the analysis with anyone
interested.
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